Effects of emphysema on diaphragm microvascular oxygen pressure.
نویسندگان
چکیده
Pulmonary emphysema impairs lung and respiratory muscle function leading to restricted physical capacity and accelerated morbidity and mortality consequent to respiratory muscle failure. In the absence of direct evidence, an O2 supply-demand imbalance within the diaphragm and other respiratory muscles in emphysema has been considered the most likely explanation for this failure. To test this hypothesis, we utilized phosphorescence quenching techniques to measure mean microvascular PO2 (PO2m) within the medial costal diaphragm of control (C, n = 10) and emphysematous (E, elastase instilled, n = 7) hamsters. PO2m and mean arterial pressure (MAP) were measured in the spontaneously breathing anesthetized hamster at inspired O2 percentages of 10, 21, and 100, and across a range of mean MAPs from 40 to 115 mm Hg. At each inspired O2, diaphragm PO2m was significantly (p < 0.05) lower in E animals (10%: C, 19 +/- 3; E, 9 +/- 2; 21%: C, 32 +/- 2; E, 21 +/- 2; 100%: C, 60 +/- 8; E, 36 +/- 9 mm Hg). At 21% inspired O2, the PO2m decrease was correlated with reduced MAP in both C (r = 0.968) and E (r = 0.976) animals. We conclude that diaphragmatic PO2m (and therefore microvascular O2 content) is decreased in emphysematous hamsters reflecting a greater diaphragmatic O2 utilization at rest and a lower O2 extraction reserve. According to Fick's law, this lower PO2m will mandate an exaggerated fall in intramyocyte PO2, which is expected to accelerate muscle glycogen depletion and consequently fatigue. This provides empirical evidence in support of one possible mechanism for respiratory muscle failure in emphysema.
منابع مشابه
Exercise intolerance and systemic manifestations of pulmonary emphysema in a mouse model
BACKGROUND Systemic effects of chronic obstructive pulmonary disease (COPD) significantly contribute to severity and mortality of the disease. We aimed to develop a COPD/emphysema model exhibiting systemic manifestations of the disease. METHODS Female NMRI mice were treated 5 times intratracheally with porcine pancreatic elastase (emphysema) or phosphate-buffered saline (control). Emphysema s...
متن کاملComparison between effects of pressure support and pressure-controlled ventilation on lung and diaphragmatic damage in experimental emphysema
BACKGROUND In patients with emphysema, invasive mechanical ventilation settings should be adjusted to minimize hyperinflation while reducing respiratory effort and providing adequate gas exchange. We evaluated the impact of pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) on pulmonary and diaphragmatic damage, as well as cardiac function, in experimental emphysema. ...
متن کاملEffect of hyperinflation on the diaphragm.
Acute hyperinflation causes the inspiratory muscles to operate at shorter than normal lengths. The ability of these muscles, in particular the diaphragm, to lower intrathoracic pressure is therefore reduced. Skeletal muscles, however, adapt to chronic shortening, and animals models of emphysema have shown that with chronic hyperinflation, the diaphragmatic muscle fibres lose sacromeres. As a re...
متن کاملDiaphragm and body weight in emphysema.
The weight of the diaphragm has been investigated in 103 male patients and 81 female patients, and the relationship between body weight and emphysema has been assessed in 662 male and 431 female patients. Diaphragm weight is related to body weight in both male (r = + 0.76) and female patients (r = +0.77) and is relatively larger in the former. Dissecting the diaphragm free of fat or freeze dryi...
متن کاملEffects of emphysema on diaphragm blood flow during exercise.
Chronic hyperinflation of the lung in emphysema displaces the diaphragm caudally, thereby placing it in a mechanically disadvantageous position and contributing to the increased work of breathing. We tested the hypothesis that total and regional diaphragm blood flows are increased in emphysema, presumably reflecting an increased diaphragm energetic demand. Male Syrian Golden hamsters were rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 163 5 شماره
صفحات -
تاریخ انتشار 2001